KAKATIYA UNIVERSITY M.A / M.Sc. MATHEMATICS syllabus (w.e.f. 2019-20) Semester - III Paper – I Paper Code: M3CP1 <u>MEASURE AND INTEGRATION</u>

<u>UNIT I</u>

Algebra of sets – Borel sets

Measurable Sets: Outer Measure - Properties of Outer Measure - Measurable Sets and Lebesgue Measure - Properties of Measurable Sets - Sequences of Measurable sets - A Nonmeasurable Set.

(Sec 1.4, 2.7, Chapter 3: Sec1 to 4 of the Text Book)

UNIT II

Measurable Functions: Properties of Measurable Functions - Sequences of Measurable Functions - Almost everywhere concept - Measurability of a Characteristic Function - Simple and Step Functions - Egoroff's Theorem.

Lebesgue Integral: The Riemann Integral - The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure - The necessary and sufficient condition for measurability of bounded function - Properties of integral of bounded measurable functions - Bounded convergence Theorem.

(Chapter 3: Sec 5 to 6 and Chapter 4: Sec 1 to 2 of the Text Book)

<u>UNIT III</u>

The Lebesgue in Integral of a Nonnegative Function: Properties of Integral of Nonnegative functions - Fatou's Lemma - Monotone Convergence Theorem - Some propositions related to Integrals - The General Lebesgue Integral - Properties of Lebesgue Integrals - Lebesgue Dominated Convergence Theorem.

(Chapter 4: Sec 3 to 4 of the Text Book)

<u>UNIT IV</u>

Differentiation and Integration: Statement of Vitali Covering lemma - The four Dini's derivatives of a function – Functions of bounded variation - A theorem on integral of a differentiable function - Differentiation of an Integral - Absolute Continuity. (Chapter 5: Sec 1to 4 of the Text Book)

Text Book:

Real Analysis by H.L.Royden, PHI, 3rd Edition

- 1. Measure Theory by P.R.Halmos, Vaan Nostrand, Princeton.
- 2. An Introduction to Measure and Integration by Inder K. Rana, Narosa Publications.

M3CP2

KAKATIYA UNIVERSITY M.A. / M.Sc. MATHEMATICS Syllabus (w.e.f. 2019-20) Semester –III Paper –II Paper Code: M3CP2 <u>FUNCTIONAL ANALYSIS</u>

<u>UNITI</u>

Banach Spaces: The definition and some Examples - Continuous Linear Transformations - The Hahn-Banach Theorem - The Natural imbedding of N in N^{**}

UNITII

The Open Mapping Theorem - The Conjugate of an Operator. Hilbert Spaces: The Definition and some Examples - Orthogonal Complements.

UNIT III

Orthonormal Sets - The Conjugate Space H* - The Adjoint of an Operator - The Self-Adjoint Operators.

<u>UNITIV</u>

Normal and Unitary Operators - Projections - The Spectral Theorem.

Text Book :

Introduction to Topology and Modern Analysis by G.F. Simmons.

Reference Books:

.

- 1. Functional Analysis by G. Backmenn and Narici
- 2. Functional Analysis by P.K. Jain IP, Ahuja and Khalil Ahmed.
- 3. Introductory Functional Analysis with Applications by E. Kreyszig.
- 4. Functional Analysis by B.V. Limaye.
- 5. A First Course in Functional Analysis by G. Goffman and G. Pedick Prentice Hall of India.

M3CP3

KAKATIYA UNIVERSITY M.A. /M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester –III Paper –III Paper Code: M3CP3 PARTIAL DIFFERENTIAL EQUATIONS

<u>UNIT-I</u>: FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Formation of First Order Partial Differential Equations – Solution of Linear First Order Partial Differential Equations (Langrange's Method)- Integral Surfaces Passing Through a Given Curve - Surfaces Orthogonal to a Given System of Surfaces-Compatibility of First Order Partial Differential Equations – Classification of the Solutions of First Order Partial Differential Equations - Solutions of Non-Linear Partial Differential Equations of First Order – Charpit's Method - Jacobi's Method - Special Types of First Order Equations . [Sections 1.1 to 1.9.3 of text book.]

<u>UNIT-II:</u> SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS.

Second order Partial Differential Equations – Origin – Linear Partial Differential Equations with Constant Coefficients - Methods of Solving Linear Partial Differential Equations – Classification of Second Order Partial Differential Equations - Classification of Second Order Partial Differential Equations.

[Sections 2.1 to 2.4.1 of text book.]

<u>UNIT-III</u>: ELLIPTIC DIFFERENTIAL EQUATIONS

Boundary Value Problems – Separation of Variable method - Laplaces equation in Cylindrical and Spherical coordinates - Interior and exterior Dirichlet problem for a circle – Interior Dirichlet problem for a Sphere- Interior Neumann problem for a Circle - Miscellaneous examples.

[Sections.3.2 to 3.10 (3.10.1,3.10.2,3.10.3]

<u>UNIT-IV:</u> PARABOLIC DIFFERENTIAL EQUATIONS

Solution of Diffusion by Separation of Variables Method - Diffusion Equation in Cylindrical and Spherical coordinates – D'Alembert solution of one dimensional Wave Equation – Separation of Variable Method - Two Dimensional Wave Equation – Separation of Variable Method- Two Dimensional Wave Equation

[Sections 4.1, 4.2, 4.3, 4.4, 5.3, 5.4, 5.5, 5.10.]

Text Book:

Partial Differential Equations for Engineers and Scientists by J.N. Sarma and Kehar Singh Published by Narosa Publishing House.

- 1. Elements of partial Differential Equations by I.N. Sneddon
- 2. Partial Equations by L.C Evans.
- 3. Partial Differential Equations by Prasad & Ravindran.

KAKATIYA UNIVERSITY M.A. /M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester –III Paper –IV (Elective) Paper Code: M3OP4 (1) <u>Mathematical Modelling</u>

<u>UNIT I</u>

Hyper planes – Hyper spheres – Convex sets and their properties –Mathematical formulation of a LPP - Graphical solution method- General LPP - Canonical and Standard form of a LPP. Basic solution – Degenerate solution – Basic feasible solution – Improved basic feasible solution - Optimum basic feasible solution – Fundamental properties of solutions-Reduction of a feasible solution to a basic feasible solution – Fundamental theorem of linear programming - Improved basic feasible solution - Existence of unbounded solution – Conditions of optimality – The Simplex algorithm.

<u>UNIT II</u>

Use of Artificial Variables – Two-Phase Method - Big M-Method – Degeneracy in linear programming - Duality – General Primal-Dual pair – Formulating a Dual problem – Primal-Dual pair in matrix form - Duality theorems – Duality and Simplex method - Dual simplex method.

UNIT III

Transportation problem- Matrix form of T.P. – special case of LPP Transportation table-Initial Basic Feasible Solution – North West Corner Rule, Matrix - Minima Method, Vogel approximation method of finding initial basic feasible solution – loops in a T.P. – Transportation Algorithm of finding optimal solution - Degeneracy in T.P. – Unbalanced T.P.

UNIT IV

Assignment problems – Hungarian method of finding optimal assignment problems – Travelling Salesman Problem.

Integer programming – all & mixed integer programming problems- Gomory's All IPP method- Gemory's mixed integer programming – branch and bound method .

Text-Book:

Operations Research by Kanti Swarup. P.K.Gupta and Manmohan.

- 1. Operations Research by Handy A.Taha. Printice Hall of India.
- 2. Linear programming methods and applications by Gass. S.I

KAKATIYA UNIVERSITY M.A / M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester - III Paper – IV (Elective) Paper Code: M3OP4 (2) <u>NUMERICAL ANALYSIS</u>

<u>UNIT I</u>

Initial Value Problems for Ordinary Differential Equations: The Elementary Theory of Initial Value Problems – Euler's Method – Higher-Order Taylor Methods – Runge-Kutta Methods – Multistep Methods.

UNITII

Direct Methods for solving Linear Systems: Linear system of equations-Matrix Factorizatoin-Special Types of Matrices-Iterative Techniques in Matrix Algebra –The Jacobi and Gauss-Seidel Iterative Techniques.

UNIT III

Numerical Solutions of Nonlinear Systems of Equations : Fixed Points for Functions of Several Variables – Newton's Method – Quasi-Newton Methods – Steepest Descent Techniques.

UNIT IV

Boundary-Value Problems for Ordinary Differential Equations : The Linear Shooting Method – The Shooting Method for Nonlinear Problems – Finite-Difference Methods for Linear Problems – Finite-Difference Methods for Nonlinear Problems

Text Book :

Numerical Analysis by Richard L.Burden and J.Douglas Faires, 9th Edition, Brooks/Cole, Cengage Learning

- 1. Introductory Methods of Numerical Analysis, by S.S. Sastry, PHI.
- 2. Numerical Methods for Scientific and Engineering Computation by M. K.Jain, S.R.K. Iyengar and R.K.Jain.

M3OP4 (3)

KAKATIYA UNIVERSITY M.A. / M.SC. MATHEMATICS Syllabus (w.e.f. 2019-20) Semester –III Paper –IV (Elective) Paper Code: M3OP4 (3) <u>AUTOMATA AND LANGUAGES</u>

<u>UNIT I</u>

Mathematical Preliminaries: Sets, relations and functions – Graph – Trees - Strings and their properties - Principle of induction.

The theory of Automata: Definition of automation - Description of a finite automation - Transition systems.

(Chapter 1: Sec 1.1 to 1.4 and Chapter 2: Sec 2.1 to 2.2 of Text Book)

<u>UNIT II</u>

Properties of Transition functions: Acceptability of a string by a finite automation - Non deterministic finite state machines - The equivalence of DFA and NDFA - Mealy and Moore models - Minimization of finite automata.

(Chapter 2: Sec 2.4 to 2.9 of Text Book)

<u>UNIT III</u>

Formal Languages: Basic definitions and examples - Chomsky classification of languages and their relations - Recursive and recursively enumerable sets - Operations on languages and automata.

(Chapter 3: Sec 3.1 to 3.6 of Text Book)

<u>UNIT IV</u>

Regular Sets and Regular Grammars: Regular expressions - Finite automata and Regular expressions - Pumping Lemma for regular sets - Applications of Puming Lemma - Closure properties of regular sets - Regular sets and regular grammar. (Chapter 4: Sec 4.1 to 4.6 of Text Book)

Text Book:

Theory Computer Science (Automata, Languages and Computation) by K.L.P. Mishra and N. Chandrasekhar, PHI

- 1. Introductory theory of computer science by E.V.Krishna Murthy, East-West Press.
- 2. Theory of Finite Automates with an introduction to formal languages by Carrel J and Lang D,PHI

M3OP4 (4)

KAKATIYA UNIVERSITY M.A. /M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester –III Paper –IV (Elective) Paper Code: M3OP4 (4) <u>ADVANCED COMPLEX ANALYSIS</u>

UNIT I:

Harmonic Functions: Harmonic functions – Borel-Carathodary theorem – Poisson's integral formula – Positive harmonic functions – Harnack's functions – Harnack's inequality – Harnack's principle

(Chapter 10: Sec 10.1 to 10.3 of Text Book)

UNIT II:

Conformal mappings and Bilinear transformations: Introduction – Conformality theorem – Bilinear transformations – Special bilinear transformations – Exponential and trigonometric transformations – Normal families – Montel's theorem and Riemann mapping theorem(Statement only) (Chapter 11 of Text Book)

<u>UNIT III:</u>

Univalent functions: Definition of univalent functions and elementary properties – Area theorem – Coefficient conjectures – Coefficient estimates – Growth and distortion theorems – Function with positive real part (Chapter 12 of Text Book up to theorem 12.8)

UNIT IV:

Subclasses of S, Entire and Meromorphic Functions: Starlike functions – Convex Functions – Close to convex functions – Infinite products – Meromorphic functions – Weirstrass theorem (Chapter 12: Sec 12.2, Chapter 13: Sec 13.1, 13.2 of Text Book)

Text Book:

Complex Variables by H.Silverman

- 1. Complex Variables Theory and Applications by H.S.Kasana
- 2. Univalent Functions by P.C.Duren
- 3. Univalent Functions by A.W.Goodman(Vol I & II)

M3OP4 (5)

KAKATIYA UNIVERSITY K.A./M.Sc MATHEMATICS Syllabus (w.e.f.2019-20) Semester-III Paper-IV (Elective) Paper Code: M3OP4(5) <u>COMMUTATIVE RINGS & MODULES</u>

<u>UNIT I</u>

Modules – Homomorphisms - Exact Sequences- Free modules – Vector spaces (Chapter 4: Sec 1 & 2 of Text Book)

UNIT II

Projective Modules – Injective Modules – Hom & Duality (Chapter 4: Sec 3 & 4 of Text Book)

UNIT III

Chain Conditions – Prime and Primary Ideals (Chapter 8: Sec 1 & 2 of Text Book)

UNIT IV

Primary Decomposition - Noetherian Rings and Modules – Krull Intersection Theorem – Nakayamma lemma- Hilbert Basis Theorem. (Chapter 8: Sec 3 & 4 of Text Book)

Text Book :

Algebra by Thomas Hungerford.

M3OP4 (6)

KAKATIYA UNIVERSITY M.A./M.Sc MATHEMATICS Syllabus(w.e.f 2019-20) Semester-III **Paper-IV** (Elective) Paper Code: M3OP4 (6) **MECHANICS OF SOLIDS**

UNIT I

Introduction to Tensors: Coordinate transformations - Summation Convention -Contravariant - Covariant and mixed tensors - Symmetric and skew symmetric tensor -Fundamental operations with the tensors - The line element and metric tensor - Tensor form of gradient, divergence and curl.

(Scope as in Text Book 1)

Analysis of Strain: Deformation - Affine transformations - Infinitesimal affine transformations - Geometrical interpretation of the components of strain - Strain quadric of Cauchy - Principal strain and strain invariants - Examples of strain - Equations of compatibility (a simple derivation).

(Chapter 1 of the Text Book 2)

UNIT II

Analysis of Stress: Body and surface forces - Stress tensor - Equations of equilibrium -Transformation of coordinates - Stress quadric of Cauchy - Maximum normal and shear stress - Mohr's diagram - Examples of stress.

(Chapter 2 of the Text Book 2)

UNIT III

Equations of Elasticity: Generalized Hooke's law - Homogeneous isotropic media - Elastic moduli for isotropic media - Simple tension - Pure shear and hydrostatic pressure -Equilibrium equations for an isotropic elastic solid - Dynamical equations for an isotropic elastic solid - The strain energy function and it's connection with Hooke's law - Uniqueness of solutions.

(Chapter 3 of the Text Book 2)

UNIT IV

Basic Problems of Elasticity: Statement of problem - Extension of beams by longitudinal forces - Beam stretched by its own weight - Bending of beams by terminal couples - Torsion of circular shaft - Torsion of cylindrical beams - Stress function.

(Chapter 4: Sec 29-35 of the Text book 2)

Text Book:

1. Vector Analysis (For Unit-I, a) Introduction to Tensors) - Murray R Spiegel, Schaum's Series.

2. Mathematical Theory of Elasticity – I.S.Sokolnikoff, TMG- New Delhi.

- 1. Theory of Elasticity S.P.Timoshenco, J.N.Goodier.
- 2. Theory of Elasticity PDS. Verma, Vikas Publications.

M3OP5(1)

KAKATIYA UNIVERSITY M.A. /M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester –III Paper – V (Elective) Paper Code: M3OP5 (1) <u>COMPUTER FUNDAMENTALS AND PROGRAMMING IN C</u>

<u>UNIT I</u>

Major Components of a Digital Computer - Computer Classification - User Interface -Hardware Software and Firmware - LAN and WAN. Number System (Binary, Decimal, Octal and Hexadecimal) - Conversion of one Number System to another - Floating-Point Representation. (Chapters 1, 2 of Text Book 1)

UNIT II

Constants – Variables – Data types – Operators – Expressions – Managing input and output operations (Chapter 2, 3, 4 of Text Book 2)

(Chapter 2, 3, 4 of Text Book 2)

<u>UNIT III</u>

Decision making and branching – Decision making and looping – Arrays - User defined function (Chapters 5, 6, 7, 9 of Text Book 2)

UNIT IV

Structures and unions – Pointers - File management in C. (Chapters 10, 11 and 12 of Text Book 2)

Text Book:

- 1. Computer Fundamentals, Architecture and Organization by B.Ram, 3rd Edition, New Age International (P) Limited.
- 2. Programming in ANSI C by E.Balagursamy, 4th Edition, Tata McGraw-Hill Education Pvt. Ltd.

Computer Lab Work

- 1. Program to print Biggest of 3 given numbers.
- 2. Program to print the roots of a quadratic equation
- 3. Program to print sum of N given numbers.
- 4. Program to print N prime numbers.
- 5. Program to check whether the given number is palindrome or not.
- 6. Implement functions to find whether a given number is prime or not.
- 7. Program to find the nth Fibonacci number using recursion.
- 8. Program to multiply two matrices
- 9. Program to check whether the given string is palindrome or not.
- 10. Program to sort a given string.
- 11. Create a file of student records .
- 12. Program to swap two numbers using pointers.
- 13. Program to compute sum of elements stored in an array using pointers.
- 14. Program to read student records (name, roll, m1, m2, m3) as structure and sort according to name.
- 15. Program to read student records (name, roll, m1, m2, m3) as structure and print the result.
- 16. Programs i)to create a file ii) to read the created file and display it contents..

KAKATIYA UNIVERSITY M.A. /M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester –III Paper – V (Elective) Paper Code: M3OP5 (2) <u>OFFICE AUTOMATION AND C – LANGUAGE</u>

<u>UNIT I</u>

MS-Office, MS-Word – Basics – Header – Footer – Tables – Graphics – Templates – Macros. MS-Excel – Worksheet – Formatting – Functions – Charts – Graphs – Worksheets and Data Strings. (Text Book 1)

<u>UNIT II</u>

Overview of C – Constants - Variables and Data types - Operators and Expressions - Managing Input and Output operations. (Chapters 1, 2, 3 and 4 of Text Book 2)

UNIT III

Decision making and Branching - Decision Making and Looping – Arrays - Handling Character Strings - User Defined Functions. (Chapters 5, 6, 7, 8 and 9 of Text Book 2)

UNIT IV

Structures and Unions – Pointers - File Management in C. (Chapters 10, 11 and 12 of Text Book 2)

Text Book:

1.Working in MS-Office – By Ron Mansfeild, Tata McGrawHill.

2. Programming in ANSI C by E.Balagurusamy, Third Edition, Tata McGraw-Hill

Reference Book:

MS-OFFICE For everyone by Sanjay Saxena, Vikas Publication.

Computer Lab Work

- 1. Prepare Curriculum Vitea of a student.
- 2. Mail Merge.
- 3. Create graphs(Line, Pie and Bar) in Excel
- 4. Simple macros in Excel.
- 5. Program to print Biggest of 3 given numbers.
- 6. Program to print sum of N given numbers.
- 7. Program to check whether the given number is palindrome or not.
- 8. Implement functions to find whether a given number is prime or not.
- 9. Program to find the nth Fibonacci number using recursion.
- 10. Program to multiply two matrices
- 11. Program to check whether the given string is palindrome or not.
- 12. Program to sort a given string.
- 13. Create a file of student records .
- 14. Program to swap two numbers using pointers.
- 15. Program to read student records (name, roll, m1,m2,m3) as structure and sort according to name.
- 16. Program to copy contents of one file to another file.

KAKATIYA UNIVERSITY M.A. /M.Sc. MATHEMATICS Syllabus (w.e.f.2019-20) Semester –III Paper – V (Elective) Paper Code: M3OP5 (3) <u>NUMERICAL ANALYSIS Using C</u>

<u>UNIT I</u>

Transcendental and polynomial equations: Introduction - Bisection Method - Secant Method - Regula-Falsi Method - Newton-Raphson Method - Mullar Method - Chebyshev Method - Multipoint Iterative Methods - Rate of convergence (Chapter 2: Sec 2.1, 2.2, 2.3, 2.4 and 2.5 of the Text Book)

<u>UNIT II</u>

System of linear algebraic equations and eigen value problems: Introduction Direct Methods: Gauss-Elimination Method - Gauss-Jordan Method - Triangularisation Method - Cholesky Method - Partition Method - Error analysis for direct methods Iteration Methods: Jacobi Iteration Method - Gauss-Seidel Iteration Method - Eigen Values and Eigen Vectors - Power Method - Inverse Power Method. (Chapter 3: Sec 3.1, 3.2, 3.3, 3.4, 3.5, 3.11 and 3.12 of the Text Book)

UNIT III

Interpolation and approximation: Introduction - Lagrange Interpolation - Newton Divided Differences - Quadratic Interpolation - Higher Order Interpolation - Iterated Interpolation -Finite Differences Operators

Interpolating Polynomials using finite differences: Gregory-Newton forward difference interpolation - Backward difference interpolation - Stirling and Bessel interpolation - Hermite interpolation - Spline interpolation

Approximation: Least square approximation.

(Chapter 4: Sec 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.9 of the Text Book)

UNIT IV

Numerical differentiation and integration: Introduction

Numerical Differentiation: Linear interpolation - Quadratic interpolation - Methods based on finite differences - Methods Based on Undetermined Coefficients - Numerical Integration Methods Based on Interpolation: Newton-Cotes Methods - Open type integration Rules Composite Integration Methods: Romberg Integration - Double Integration. (Chapter 5: Sec 5.1, 5.2, 5.6, 5.7, 5.9, 5.10 and 5.11 of the Text Book)

Text Book:

Numerical Methods for Scientific and Engineering Computation by M. K. Jain, S. R. K. Iyengar, R. K. Jain, 5th Edition, New Age International (p) Limited Publishers

Reference Book:

An Introduction to Numerical Analysis by Kendall E. Atkinson

Numerical Analysis Laboratory

The following programs are to be executed in C/Fortran language.

- 1. Solution of system of n x n linear equations AX=B using Gauss Elimination method.
- 2. Finding solution of n x n linear equations AX=B using LU decomposition method.
- 3. Finding solution of n x n linear equations AX=B using Gauss-Seidel iteration method.
- Finding the largest Eigen value in magnitude and the corresponding Eigen vector of an n x n matrix A by Power method.
- 5. Lagrange interpolation.
- 6. Newton-Gregory forward interpolation.
- 7. Newton-Gregory backward interpolation.
- 8. Evaluation of the integral of f(x) between the limits 'a' and 'b' using Trapezoidal rule with 'n' subintervals.
- Evaluation of the integral of f(x) between the limits 'a' and 'b' using Simpson's 1/3rd rule with '2n' subintervals.
- Evaluation of the integral of f(x) between the limits 'a' and 'b' using Simpson's 3/8th rule with '3n' subintervals.
- 11. Solution of equation by Bisection method.
- 12. Solution of equation by Regula Falsi method.
- 13. Solution of equation by Newton-Raphson method.
- 14. Solution of equation by Mullar method.

Text/Reference Books:

- 1. Numerical methods for scientific and Engineering Computation by M. K. Jain, S. R. K. Iyengar and R. K. Jain.
- 2. Numerical methods by E. Balagurusamy.
- 3. Computer oriented Numerical methods by V. Raja Raman.